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ABSTRACT

This paper reviews the methodological foundations of
deterministic and random modeling and argues that
determinism remains the scientific goal of any
investigation, We make a contribution by performing an
experiment based on the most famous chaotic deterministic
system of the Lorehz equations and demonstrate that the
currently available techniques for distinguishing between
deterministic and random systems are not adequate. The
two techniques we employ are the correlation dimension
and the BDS test.

INTRODUCTION

Determinism and randomness are the two pillars of
scientific methodology. Ruhla (1992) [4] argues that
science, in its long historical evolution, has favored
determinism. In other words, the search for an exact
relationship between dependent and independent variables
has received first priority by scientists who follow the
deterministic tradition of Euclid, Newton and Leibnitz.
The probabilistic paradigm, which originated in the
rigorous analysis of gambling games, has flourished during
the past several decades as exact relationships have become
more difficult to confirm,

Developments in operations résearch, management science
and economic analysis since World War II have reflected
the evolution of scientific methodology in the physical
sciences. The Marshallian static equilibrium price theory,
the Walrasian dynamic titonement general equilibrium,
linear programming techniques, game theory and various
other techniques, all emphasized classical determinism.
However, measurement errors, unobservable variables,
incomplete models, the introduction of expectations and the
admission of the economic and business complexity,
among other reasons, have swung the methodological
pendulum towards probabilistic reasoning. The need to
forecast an uncertain future variable for purposes of
economic and financial planning has reinforced
probabilistic methods. Such reasoning gave rise fo
statistical techniques and the establishment of the field of
decision sciences.

Although iﬁ is currently accepted by decisicn scientists that

there is a clear dichotomy between deterministic

and probabilistic modeling, relatively recent developments
in physical chaotic dynamics have shown that certain
processes, while they appear to be random, need not in
fact be random. It is the purpose of this paper to first
review rapidly these ideas and, second to consider a model
that is deterministic and ask the fundamental question:
"When does nonrandomness appear random?". Put
differently, suppose that an exact, deterministic theoretical
model is developed between certain variables: when or
how can a decision scientist conclude, by observing exact
time series measurements of such variables, that these
variables are random?

The remainder of the paper is organized as follows,
Section 2 briefly contrasts the notion of deterministic and
random models while section 3 presents the most famous
deterministic system that behaves like a random one, i.e.
the Lorenz equations. Our contribution is exposited in
section 4 where we sample from the Lorenz equations and
posit the question: when or how can a decision scientist
uncover whether the model under analysis is deterministic
or random.

DETERMINISTIC VERSUS RANDOM MODELS

Deterministic models consist of exact relationships.
Abstracting from specific modeling considerations, the
notion of determinism is -clearly demonstrated in the
relationship of a function: _

y = 1(x) (n
where f denotes the set of ordered pairs (x,y). In other
words, each x is unambiguously associated with a specific
y, with such a y being equal to f(x). From the simple
calculus where f(x): R = R, R denoting the real
numbers, to multivariate calculfus, differential equations,
real analysis and functional analysis, the subject matter
remains exact relationships between or among cettain
variables. These exact relationships can become quite

- complicated, particularly when such a relationship is
between derjvatives (i.e. differential equations) or even .

among functions themselves (i.e. functional analysis).
Nevertheless, in all instances, such relationships are exact.
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From Buclid's geometry, to Newton's calculus and to
today's advanced analysis, the subject matter of scientific
investigations js determinism. Discovering, establishing,
analyzing and understanding exact relationships among
certain variables remains today’s highest scientific goal,
not omly of mathematicians, but also of applied
researchers, such as physicists and management scientists.
" Only after such a primary goal has not been reached, do
scientists consider second best solutions by studying
nondeterministic models. " Such models are also calted
random or stochastic and are mostly substitutes rather than
competing alternatives for the deterministic truth.

, ‘ .
Mathematics, which one could argue remains the most

rigorous of human scientific efforts, demonstrates that,
independent of its intrinsic interest, randomness is not an
alternative of equal standing but a temporary substitute to
determinism. From the elementary probability, where one
flips a coin, to measure-theoretic probability, the notion of
a function prevails, What changes s the domain of the
function. In probability, the domain is a random set and
a function that takes its values from a random set is called
a random variable. Ruhla(1992) [4] describes with great
scientific care the relationship between these two

methodologies by arguing that probabilityr is a branch in the -

scientific tree named determinism.
THE LORENZ EQUATIONS

Our discussion thus far was carried out at the
methodological level. In other words, in searching for
causal relationships, a scientist may choose an exact or a
random nodel. We have argued that exactness has been
given priority in the applied sciences and in .pure
mathematics, while randomness is viewed as a temporary
methodological substitute. How, can we further strengthen
our argument towards determinism? '

Chaotic dynamics was developed precisely for this
purpose: to demonstrate that there exist exact functions
which generate very complicated trajectories that appear
like random. From the seminal work of Eckman and

Ruelle (1985) [2] to the numerous texts about dynamics

scientists have exposited an exciting mew branch of
mathematics which reinforces determinism. :

Limitations of space do not allow us to describe in detail
the key ideas, definitions and theorems of chaotic
dynamics. Here, for the sake of continuity, we give the
fundamental definition of chaotic dynamics. We say that
a function f: R - R is chaotic if it satisfies three
conditions: (a) f is topologically transitive, (b) f has
sensitive dependence on initial conditions, and (¢) f has

periodic points that are dense in the real numbers.

The Lorenz (1963) [3j equations are the most famous
example of a system that generates chaotic dynamics.

They are:
X = 8(-Xy + YVl )
¥e = X - Vet~ Xt (3
7, = bz + XY @

This system of equations is represented here by difference
equations. They can also be expressed as a system of
differential equations, as was initially derived by Lorenz
(1963) [3] in his meteorological study of a three-equation
approximation to the motion of a layer of fluid heated from
below. Observe that there are three parameters, s,r and b.
More specifically, the parameter r corresponds to the
Reynolds number and as it varies, the system goes through
remarkable qualitative changes. For parameter values b =
2.667, r = 28.0 and s = 10.0, almost all solutions
converge to a set called the strange atiractor.
Furthermore, once on the attractor, these solutions exhibit
random-fike behavior. An exhaustive analysis of the
numerous properties of these equations may be found in
Sparrow (1982) [5). - . S

THE EXPERIMENT

Using the deterministic Lorenz equations, with a step size
of 0.1, we generated three sets of 5000 observations each,
The first set records each value of the variable x generated
by the Lorenz equations. In other words, the first set has
jump = 1. The jumps of the second and the third set are
10 and 100 respectively. The exact size of these two
jumps is not critical; other numbers such as 20 and 50 or
250 and 500, etc., could have been chosen; What we wish
to illustrate is three levels of information: all values, -
every tenth value and every hundredth value, where these
three procedures correspond to detailed sampling, frequent
sampling, and infrequent sampling. Obviously, to keep the
mumber of observations the same, the interval of the
second set is longer than the first and the third is longer
than the second. S ' ‘ '

We next ask the fundamental question: what methods are
available to the decision scientist to allow him/her to
distinguish whether a data set of observations is generated
by a deterministic or random function? Scientists' from
various backgrounds have researched this question
extensively.. For our purposes, we use the two main -
techniques, namely, the correlation dimension and the BDS
tests,

For a given € > 0, define the correlation integral, denoted
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by CH(e), to be: ‘ :
CH(e)=the number of pairs (5.} whose distancel ¥ (s) XM (t)l< e
T2

=the nymberof (s t). 1<g . 5¢T ExMs)-xMit)l<e

T (3)

where Ty, = (T + 1) - (M - 1), and as before M =
[x@), xt + 1), ..., x(t + M -m D]

Observe that | . | in ('5)' denotes vector norm. Using the
correlation integral, we can define the correlation
dimension for an embedding dimension M as :

DM= lim _InCHe) . {6)
€0 Ine) - :
T-

In (6) In denotes natural logarithm. Finally, the
correlation dimension D is given by:

D =limD" . : ™

Mm

The second test we perform is the BDS, extensively
presented in Brock, Hsieh and LeBaron (1991) [1]. These
authors report that for an independent and identically
distributed

CH(eT)~[C* (€ as T-w ®

random process and for fixed M-histories and € > 0

JHCH (eT) ~(C e DIV} - N (0,67 (6TH,

_ . ©)
They further report that as T approaches infinity,

where N denotes a normal distribution with mean zero and
variance 0%(e,7). From the above two equations {8) and
(9), it is concluded that

YFCH (e T -1CEDY |y 0,1y
oY (e, 1) '

(10

The correlation dimension performs well when every value
of the Lorenz equation is sampled, but does poorly when
the jump increases to 10 and then to 100. This illustrates
that unless, in the real world, we can record information
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at high frequencies rather than at prespecified intervals,
say end of the day, weekly, monthly, etc., we are bound
to lose the underlying structure. Our experiment shows
that infrequent sampling misses the deterministic
relationship. Of course, data limitations may not allow a
scientist to perform the tests we used. For example using
annual or quarterly data, ome does not have enough
observations to do dimension and BDS analysis. The BDS
does very well rejecting randomness in our sample, but
cannot specify the alternative. This test is new and offers
great promise. Again, Brock, Hsieh and LeBaron (1991)
(1] report numerous applications for this test that have
taken place recently. : '

CONCLUSION

Our overall conclusion is simply this: since WWII, the
scientific pendulum in general and in management science,
operations research and forecasting in particular, has been
pulied away from determinism and brought towards
stochasticity. But such stochasticity has not fully enriched
our understanding of the real world simply because what
drives randomness often cannot be anticipated. Chaotic
dynamics is not a totally new methodology, but rather a
new way of affirming order, rationality and exactness
despite the sceming disorderly, illogical and random
behavior of certain variables. This discovery of chaotic
dynamics and our jllustration of the Lorenz equation may

‘hopefully be viewed as an opportunity to push the

methodological pendulum back towards determinism.
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